[1] Kuang Yonghui; Zhu Junyi, A three-wave interaction model with self-consistent sources: the Dbar-dressing method and solutions, J. Math. Anal. Appl., 426(2) (2015) 783-793.
[2] Zhu Junyi and Geng Xianguo,The AB equations and the Dbar-dressing method in semi-characteristic coordinates, Math. Phys. Anal. Geom. , 17(1) (2014) 49-65.
[3] Zhu Junyi and Geng Xianguo, A hierarchy of coupled evolution equations with self-consistent sources and the dressing method, J. Phys. A: Math. Theor. , 46 (3)(2013) 035202.
[4] Zhu Junyi and Li Zhen, Dressing method for a generalized focusing NLS equation via local Riemann–Hilbert problem. Acta Physica Polonica B, 42(9) (2011) 1893-1904.
[5] Zhu Junyi and Geng Xianguo, A New Integrable Symplectic Map of Bagmann Type, Acta Phys. Pol. B, 39 (8) (2008) 1783-1794.
[6] Zhu Junyi and Geng Xianguo, Algebro-geometric constructions of the (2+1)-dimensional differential-difference equation, Phys. Lett. A, 368 (6) (2007) 464-469.
[7] Geng, Xianguo; Dai, H. H.; Zhu, Junyi,Decomposition of the Discrete Ablowitz-Ladik Hierarchy,Stud. Appl. Math., 118(3)(2007) 281-312.
[8] Zhu Junyi and Geng Xianguo, The Generaliazed of Dressing method with Applications to Variable-coefficient coupled KP Equations, Chaos Soliton Fract., 31(5) (2007) 1143-1148.
[9]Zhu Junyi and Geng Xianguo, Darboux Transformation for Tzitzeica Equation, Commun. Theor. Phys. 45(4) (2006) 577-580.
[10] Zhu Junyi and Geng Xianguo, The Generalized version of Dressing Method with Applications to AKNS Equations, J. Nonlinear Math. Phys. 13 (1) (2006) 81-89.