[36] Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane. ACS Applied Materials & Interfaces, 2016, 8, 20352-20363. (1区, IF=7.145)
[35] Constructing ionic liquid-filled proton transfer channels within nanocomposite membrane by using functionalized graphene oxide. ACS Applied Materials & Interfaces, 2016, 8, 588-599. (1区, IF=7.145)
[34] Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 2016, 515, 175-188. (1区, IF=5.557)
[33] Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer. Journal of Membrane Science, 2016, 505, 108-118. (1区, IF=5.557)
[32] Embedding sulfonated lithium ion-sieves into polyelectrolyte membrane to construct efficient proton conduction pathways. Journal of Membrane Science, 2016, 501, 109-122. (1区, IF=5.557)
[31] Tuning the performance of anion exchange membranes by embedding multifunctional nanotubes into a polymer matrix. Journal of Membrane Science, 2016, 498, 242-253. (1区, IF=5.557)
[30] Polymer-inorganic hybrid proton conductive membranes: effect of the interfacial transfer pathways. Electrochimica Acta, 2016, 212, 426-439. (1区, IF=4.803)
[29] Tuning the microstructure and permeation property of thin film nanocomposite membrane by functionalized inorganic nanospheres for solvent resistant nanofiltration. Separation and Purification Technology, 2016, 165, 60–70. (2区, IF=3.299)
[28] Composite anion exchange membrane from quaternized polymer spheres with tunable and enhanced hydroxide conduction property. Industrial & Engineering Chemistry Research, 2016, 55, 9064–9076. (2区, IF=2.567)
2015年:
[27] Synergistic proton transfer through nanofibrous composite membranes by suitably combining proton carriers from the nanofiber mat and pore-filling matrix. Journal of Materials Chemistry A, 2015, 3, 21832–21841. (1区, IF=8.262)
[26] Constructing proton-conductive highways within an ionomer membrane by embedding sulfonated polymer brush modified graphene oxide. Journal of Power Sources, 2015, 286, 445–457. (1区, IF=6.333)
[25] Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity. Journal of Power Sources, 2015, 279, 667–677. (1区, IF=6.333)
[24] Anhydrous proton exchange membranes comprising of chitosan and phosphorylated graphene oxide for elevated temperature fuel cells. Journal of Membrane Science, 2015, 495, 48–60. (1区, IF=5.557)
[23] Enhanced proton conductivities of nanofibrous composite membranes enabled by acid-base pairs under hydrated and anhydrous conditions. Journal of Membrane Science, 2015, 482, 1–12. (1区, IF=5.557)
[22] Enhanced anhydrous proton conductivity of polymer electrolyte membrane enabled by facile ionic liquid-based hoping pathways. Journal of Membrane Science, 2015, 476, 136–147. (1区, IF=5.557)
[20] Tunable solvent permeation properties of thin film nanocomposite membrane by constructing dual-pathways using cyclodextrins for organic solvent nanofiltration. ACS Sustainable Chemistry & Engineering, 2015, 3, 1925–1933. (2区, IF=5.267)
[19] Graphene oxide-embedded nanocomposite membrane for solvent resistant nanofiltration with enhanced rejection ability. Chemical Engineering Science, 2015, 138, 227–238. (2区, IF=2.750)
[18] Tuning the performance of composite membranes by optimizing PDMS content and cross-linking time for solvent resistant nanofiltration. Industrial & Engineering Chemistry Research, 2015, 54, 6175–6186. (2区, IF=2.567)
[17] Nanohybrid membranes with hydroxide ion transport highways constructed from imidazolium-functionalized graphene oxide. RSC Advances, 2015, 5, 88736–88747. (3区, IF=3.289)
2014年:
[16] Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. Journal of Materials Chemistry A, 2014, 2, 9548–9558. (1区, IF=8.262)
[15] Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions. Journal of Power Sources, 2014, 269, 898–911. (1区, IF=6.333)
[14] Mineralization-inspired preparation of composite membranes with polyethyleneimine–nanoparticle hybrid active layer for solvent resistant nanofiltration. Journal of Membrane Science, 2014, 470, 70–79. (1区,IF=5.557)
[13] Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes. Journal of Membrane Science, 2014, 454, 220–232. (1区, IF=5.557)
[12] Enhancement of proton conductivity of polymer electrolyte membrane enabled by sulfonated nanotubes. International Journal of Hydrogen Energy, 2014, 39, 974 –986. (2区, IF=3.205)
[11] Cross-linked polyacrylonitrile/polyethyleneimine–polydimethylsiloxane composite membrane for solvent resistant nanofiltration. Chemical Engineering Science, 2014, 106, 157–166. (2区, IF=2.750)
2013年:
[10] Independent control of water retention and acid–base pairing through double-shelled microcapsules to confer membranes with enhanced proton conduction under low humidity. Journal of Materials Chemistry A, 2013, 1, 2267–2277. (1区, IF=8.262)
[9] Enhanced proton conductivity of sulfonated poly(ether ether ketone) membrane embedded by dopamine modified nanotubes for proton exchange membrane fuel cell. Fuel cells, 2013, 13, 1155–1165. (3区, IF=2.080)
2012年:
[8] Enhancement of proton conduction at low humidity by incorporating imidazole microcapsules into polymer electrolyte membranes. Advanced Functional Materials, 2012, 22, 4539–4546. (1区, IF=11.382)
2011年:
[7] Enhanced water retention by using polymeric microcapsules to confer high proton conductivity on membranes at low humidity. Advanced Functional Materials, 2011, 21, 971–978. (1区, IF=11.382)
2010年:
[6] Fabrication and performances of solid superacid embedded chitosan hybrid membranes for direct methanol fuel cell. Journal of Power Sources, 2010, 195, 2526–2533. (1区, IF=6.333)
[5] Simultaneously enhanced methanol barrier and proton conductive properties of phosphorylated titanate nanotubes embedded nanocomposite membranes. Journal of Power Sources, 2010, 195, 1015–1023. (1区, IF=6.333)
[4] Enhancing proton conduction and methanol barrier performance of sulfonated poly(ether ether ketone) membrane by incorporated polymer carboxylic acid spheres. Journal of Membrane Science, 2010, 364, 253–262. (1区, IF=5.557)
2009年:
[3] A facile surface modification of Nafion membrane by the formation of self-polymerized dopamine nano-layer to enhance the methanol barrier property. Journal of Power Sources, 2009, 192, 336–343. (1区, IF=6.333)
[2] Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic submicrospheres into polymer matrix. Journal of Power Sources, 2009, 188, 64–74. (1区, IF=6.333)
2008年:
[1] Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell. Journal of Power Sources, 2008, 178, 9–19. (1区, IF=6.333)